Crack Extension and Possibility of Debonding in Encapsulation-Based Self-Healing Materials

نویسندگان

  • Wenting Li
  • Zhengwu Jiang
  • Zhenghong Yang
چکیده

The breakage of capsules upon crack propagation is crucial for achieving crack healing in encapsulation-based self-healing materials. A mesomechanical model was developed in this study to simulate the process of crack propagation in a matrix and the potential of debonding. The model used the extended finite element method (XFEM) combined with a cohesive zone model (CZM) in a two-dimensional (2D) configuration. The configuration consisted of an infinite matrix with an embedded crack and a capsule nearby, all subjected to a uniaxial remote tensile load. A parametric study was performed to investigate the effect of geometry, elastic parameters and fracture properties on the fracture response of the system. The results indicated that the effect of the capsule wall on the fracture behavior of the matrix is insignificant for tc/Rc ≤ 0.05. The matrix strength influenced the ultimate crack length, while the Young's modulus ratio Ec/Em only affected the rate of crack propagation. The potential for capsule breakage or debonding was dependent on the comparative strength between capsule and interface (Sc/Sint), provided the crack could reach the capsule. The critical value of Sc,cr/Sint,cr was obtained using this model for materials design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inorganic Powder Encapsulated in Brittle Polymer Particles for Self-healing Cement-based Materials

Many types of healing agents have been investigated. These agents are processed in different ways, such as adhesive polymer in capsules or hollow fibre glasses, bacteria in porous aggregates and geo-materials directly incorporated in the cementbased materials. In this study, sodium silicate powder is encapsulated in polystyrene particles (polystyrene particle containing sodium silicate is defin...

متن کامل

Modeling of Self-Healing Concrete: A Review

Self-healing concrete (SHC) has received a tremendous attention due to its advanced ability of automatic crack detection and crack repairing compared to the standard concrete. Two main approaches which considered as to-date self-healing mechanisms are autogenous and autonomous healing. In the past several years, the effort of the research has been focused on experimental works instead of numeri...

متن کامل

Novel Encapsulation Technologies for Small Size-scale Self-healing Applications by Aaron

Self-healing technology offers an autonomic route to repairing damage in advanced polymers to extend their lifetime. A variety of self-healing systems have been developed for mechanical self-healing, protective coatings, and electronic self-healing. These self-healing systems rely on functional groups within the polymer, microvascular networks, or compartmentalization in capsules and particles....

متن کامل

Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing

Successful arrest and retardation of fatigue cracks is achieved with an in situ self-healing epoxy matrix composite that incorporates microencapsulated dicyclopentadiene (DCPD) healing agent and Grubbs first generation Ru catalyst. Healing agent is released into the crack plane by the propagating crack, where it polymerizes to form a polymer wedge, generating a crack tip shielding mechanism. Du...

متن کامل

Analytical model for effects of capsule shape on the healing efficiency in self-healing materials

The fundamental requirement for the autonomous capsule-based self-healing process to work is that cracks need to reach the capsules and break them such that the healing agent can be released. Ignoring all other aspects, the amount of healing agents released into the crack is essential to obtain a good healing. Meanwhile, from the perspective of the capsule shapes, spherical or elongated capsule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017